Cholesterol and ergosterol influence nystatin surface aggregation: relation to pore formation.

نویسندگان

  • Ana Coutinho
  • Liana Silva
  • Alexander Fedorov
  • Manuel Prieto
چکیده

Nystatin interaction with liposomes mimicking fungal and mammalian membranes (ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) large unilamellar vesicles, respectively) was studied by fluorescence spectroscopy. The activity of this antibiotic was also measured using a pyranine fluorescence detected K+/H+ exchange assay. Nystatin mean fluorescence lifetime varied with the antibiotic concentration and ergosterol content (0-30 mol%) of the lipid vesicles. It sharply increased from 5 to 37 ns upon reaching 100 molecules per liposome, reporting nystatin oligomerization in the membrane. Concomitantly, spectral alterations typical of excitonic coupling were detected and there was a pronounced increase in the initial rate of pore formation by nystatin. These findings suggest that nystatin exerts its antibiotic activity via a two-stage mechanism: at low antibiotic concentrations, surface-adsorbed monomeric antibiotic molecules perturb the lipid packing, changing the permeability properties of the ergosterol-rich liposomes. Upon reaching a critical threshold, nystatin mode of action switches to the classical model of transmembrane aqueous channel formation. In the presence of cholesterol-containing POPC liposomes, neither nystatin spectroscopic properties, nor the kinetics of K+ efflux varied with the antibiotic concentration suggesting that in this case the first stage of antibiotic mode of action always prevails or the assemblies formed by nystatin and cholesterol are very loose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure.

The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluores...

متن کامل

Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action

Nystatin and amphotericin B induce a cation-selective conductance when added to one side of a lipid bilayer membrane and an anion-selective conductance when added to both sides. The concentrations of antibiotic required for the one-sided action are comparable to those employed on plasma membranes and are considerably larger than those required for the two-sided action. We propose that the two-s...

متن کامل

Selective membrane toxicity of the polyene antibiotics: studies on lecithin membrane models (liposomes).

In the absence of sterol, amphotericin B at 5 x 10(-6) M caused maximum marker release from the saturated dipalmitoyl lecithin liposomes, minimum release from the unsaturated dioleoyl lecithin liposomes, and an in-between response from egg lecithin liposomes. Nystatin at 2.5 to 4.0 x 10(-5) M induced appreciable marker release from all three types of sterol-free liposomes. The amphotericin B- a...

متن کامل

On the one-sided action of amphotericin B on lipid bilayer membranes

The one-sided action of the polyene antibiotic, amphotericin B, on phospholipid bilayer membranes formed from synthetic phosphatidylcholines (DOPC and DPhPC) and sterols (ergosterol and cholesterol), has been investigated. We found formation of well-defined ionic channels for both sterols and not only for ergosterol-containing membranes (Bolard, J., P. Legrand, F. Heitz, and B. Cybulska. 1991. ...

متن کامل

Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin-ergosterol modulated vesicle fusion.

The study of ion channels and other membrane proteins and their potential use as biosensors and drug screening targets require their reconstitution in an artificial membrane. These applications would greatly benefit from microfabricated devices in which stable artificial lipid bilayers can be rapidly and reliably formed. However, the amount of protein delivered to the bilayer must be carefully ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2004